SWARNANDHRA
COLLEGE OF ENGINEERING \& TECHNOLOGY
(Autonomous)
Accredited by NBA, AICTE, NEW DELHI • Accredited by NAAC with "A" Grade - 3.32/4.00 CGPA
Recognized by UGC Under Sections 2 ($)$ \& 12 (B) of UGC Act 1956
Approved by AICTE, New Delhi, Permanent Affiliated to JNTU K, Kakinada Seetharampuram, NARSAPUR-534 280, W.G-Dist., Andhra Pradesh

DEPARTMENT OF MATHEMATICS

TEACHING PLAN

	Laurent's series. (K1,K2,K3)	2.5	Maclaruin`s series-Related problems	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
		2.6	Laurent's series	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PP'T,BB
		2.7	Laurent's series- Related problems	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT, BB
		2.8	Laurent's series- Related problems	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT, BB
		2.9	Singular point-Isolated point	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
		2.10	pole of Order m-Essential singularity	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
3	CO 3: Students are able to find residues at singular points, able to evaluate integrals. (K2,K3)	UNIT III: Complex Integration and Residues					
		3.1	Cauchy's Integral Theorem	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1	12	PPT, BB
		3.2	Cauchy's Integral Theorem - Related problems	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
		3.3	Cauchy's Integral formula- Related problems	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
		3.4	Cauchy's Integral formula	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
		3.5	Generalized Integral Formula	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
		3.6	Generalized Integral Formula- Related problems	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
		3.7	Residue- by Formula	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
		3.8	Evaluation of residue by Laurent's series	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
		3.9	Residue theorem	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
		3.10	Residue theorem and related problems	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
		3.11	Residue theorem and related problems	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
		3.12	Residue theorem and related problems	$\mathrm{T}_{1}, \mathrm{R}_{1}, \mathrm{R}_{2}$	1		PPT,BB
4	CO 4 :Students are able to construct the probability distribution function of random variables.(K1,K 2,K3)	UNIT IV: The Random Variable and its distributions					
		4.1	Introduction, Definition of a random variable,	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1	13	PPT,BB
		4.2	Conditions for a Function to be a Random Variable	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB
		4.3	Discrete random variables	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB
		4.4	Distribution Function - related problems	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB
		4.5	Binomial Distributions	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT, BB
		4.6	Binomial Distributions- related problems	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB
		4.7	Poisson Distributions	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB
		4.8	Poisson Distributions- related problems	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB
		4.9	Continuous Random variables	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT, BB
		4.10	Distribution Function- related problems	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB
		4.11	Gaussian distributions	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB
		4.12	Gaussian distributions- related problems	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB
		4.13	Exponential distributions - related problems	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB
	CO 5 :Students are able to calculate expectations of random variables like variance and moments.(K1,	UNIT V: Operation on Random Variables					
		5.1	Introduction, expected value of a random variable	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1	13	PPT,BB
		5.2	expected value of a function of a random variable	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB
		5.3	Moments: Moments about the origin	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB
		5.4	Moments about the origin - related problems	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1		PPT,BB

5	K2, K3)	5.5	Central Moments - related problems	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1	PPT, BB
		5.6	Variance	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1	PPT, BB
		5.7	Functions that give Moments: Moment generating function	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1	PPT, BB
		5.8	Functions that give Moments: Moment generating function- related problems	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1	PPT,BB
		5.9	Introduction, vector random variables	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1	PPT, BB
		5.10	Joint distribution and its properties	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1	PPT,BB
		5.11	Joint distribution function	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1	PPT,BB
		5.12	properties of joint distribution	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1	PPT,BB
		5.13	marginal distributions	$\mathrm{T}_{2}, \mathrm{R}_{2}, \mathrm{R}_{3}$	1	PPT,BB
Cumulative Proposed Periods					60	
Text Books:						
S. No.	Authors, Book Title, Edition, Publisher, Year of Publication					
1	B. S. Grewal, Higher Engineering Mathematics, 42/e, Khanna Publishers, 2012.					
2	Peytoon Z peebles, Probability, Random variables \& Random Signal Principles, TMH, $4^{\text {th }}$ Edition 2001.					
Reference Books:						
S. No	Authors, Book Title, Edition, Publisher, Year of Publication					
1	B.V. Ramana, Higher Engineering Mathematics, Tata McGraw Hill, 2007					
2	Dr. T.K.V.Iyengar, Complex variables\&Statistical Methods ,First Edition, S.Chand publications,2012					
3	K. Murugesan, P. Gurusamy, Probability \& Statistics, $2^{\text {nd }}$ Edition, Anuradha Publications, 2010					
Web Details						
1	https://youtu.be/sLF-ntGwOmA (Complex integration)					
2	https://youtu.be/ijPSM3BBE2E (cauchy's integral formula)					
3	https://youtu.be/wPNcbmbnp98 (residue theorem)					
4	https://youtu.be/60ReaZWsvCA (complex power series)					
5	https://youtu.be/ sexvOCO080 (random variables)					
6	https://youtu.be/8URfl2yfrBY (moment generating functions)					
			Name	Signat	,	
i.	Faculty I		Dr. S DHARAJA DEVI (ECE-D)	Sal		
ii.	Faculty II		Mr. K. D. N. MURTHY (ECE-A, B \& C)	(4)-2310121		
iii.	Course Coordinator		Mr. K. D. N. MURTHY	(8). 23110121		
iv.	Module Coordinator		Mr. Ch. PEDDI RAJU	Cla. P. Lum		
v.	HOD of Mathematics		Dr. S. DHARAJA DEVI	Soll		

Principal

